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Abstract   

We propose an incremental type of ray-propagator which 
can be used to identify the typical information that 
respectively the point-source and telescopic-source 
solutions carry with them regarding the 2D medium 
parameters (assuming a smooth earth model). Both 
forward time propagation and reverse-time propagation 
are considered. Moreover, a source-perturbed version of 
the incremental system is used to analyze the velocity 
stretching problem, i.e. how to estimate more proper 
interval velocities from either time-migration or stacking 
velocities. 

 

Introduction 

Paraxial ray-tracing in a smooth model is a well- 
established technique (Červený, 2001). This paper makes 
an attempt to, in a rather naïve way, to unravel the 
information content carried by the fundamental point-
source and telescopic-source solutions by considering a 
so-called incremental ray-propagator system. The results 
can also be used to give further insight into the ray 
quantities associated with the surface-to-surface ray 
propagator formulation of Bortfeld (1989) and generalized 
stacking formulations like the Common Reflection Surface 
(CRS) technique (Jäger et al., 2001).  

By considering a special version of the incremental 
propagator system, the problem of velocity stretching can 
also be easily investigated. The velocity stretching 
problem means how to map stacking velocities or time-
migration velocities back to local interval velocities. This 
procedure was first discussed by Cameron et al. (2007) 
within the context of prestack time migration. In this paper 
we also demonstrate that an analogous analysis can be 
carried out with respect to a generalized stacking 
procedure such as CRS.   

 

Forward incremental ray-propagator 

 
The starting point is the paraxial dynamic ray-tracing 

system in ray-centered coordinates, which in a 2D 

medium reads (Červený, 2001) 
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where T  is the traveltime along the central ray, v is the 

medium velocity (measured along the central or reference 

ray) and 
qqv is the second derivative of the velocity with 

respect to the ray centered coordinate q (i.e. along a 

direction  orthogonal to the  central ray direction). Taking 

the time derivative of the above two equations gives 
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Consider now two nearby points  and  (not end 

points) along the central ray representing an incremental 

traveltime difference T and introduce the following Taylor 

expansions to second order in traveltime (employing the 

notation and similarly for P, v and vqq)    
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In Eq.(3) we have neglected the time derivatives in Eq.(2) 

and assumed constant values within each time step. As 

usual practice, the system in Eq.(3) can be conveniently 

recast in matrix form   
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where 
i  

is the incremental ray-propagator matrix 

given by 
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In analogy with the usual definition of the propagator 

matrix (Červený, 2001), the columns TPQ )( 11 


 and 

TPQ )( 22 


of the matrix 
i  represent the 

incremental plane-wave (telescopic) and point-source 
solutions of the dynamical ray-tracing system along the 

ray that connect the nearby points  and . In the 

same way, 
i fulfills the symplectic condition 

(Červený, 2001) (within 2
nd

 order time perturbation) 
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from which  1|| 
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Time-reversed incremental ray-propagator 

The time-reversed version of Eq.(4) will formally read 
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Note that the equality between the inverse and the time-

reversed incremental ray propagator holds because we 

are not considering the complete ray propagation from 

source to receiver. From the symplectic condition, 

together with the definition of the ray centered 

coordinates, we have, (Červený, 2001) 
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Cascaded solutions 

Based on Eqs.(4) and (5), corresponding cascaded 

solutions can be constructed. Assume a total of N time 

steps (corresponding to a total traveltime T =NT). Then 

we can write, in case of forward propagation in time 

(assuming either point or telescopic source initial 

condition), 
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where 


represents the ray-propagator matrix along the 

full ray 
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The telescopic and point-source components of the 

propagator matrix are found to be 
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in which we have employed the time averages  
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In Eqs.(10)-(13), the notation vrms(Ti,Tf) implies an rms-

velocity calculated along the central ray between 
propagation times Ti and Tf. We also adopted the 
simplifying notation vrms(0,T)= vrms. 

The corresponding cascaded system in case of time-
reversed propagation reads 
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which, in combination with Eq.(9a), gives the well-known 

relationships between forward and reverse time- 

propagated ray matrices (by analogy with Eq.(8)) 

(Červený, 2001)   
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Redundancy of elementary solutions 

It follows from Eq.(16) that, if the dynamic quantities, Q 
and P, of forward propagation in time are known, the 

corresponding quantities for the reverse time solution can 
be easily deduced (and vice versa). The forward 
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propagated solutions represent physical responses. 

Nevertheless, as later demonstrated, indirect quantities, 
such as the wavefront curvature (or its inverse), of the 
non-physical, time-reversed telescopic solutions can 
provide useful information about the local (interval) 
velocities. As a consequence, such solutions are bound to 
play an important role in velocity mapping, where the 
transformation is represented by tracing along normal or 
image rays. We observe, in passing, that these types of 
rays are telescopic in nature in a paraxial sense, since the 
wavefront is linear at the takeoff for an image ray (traced 
backward in time) and linear at the reflector for a normal 
ray (traced forward in time).   In the next section we will 
focus on three elementary solutions, namely forward point 
source, as well as forward and backward telescopic in 
more detail (cf. Fig.1). The main purpose is to unravel the 
information each of them carries about the medium. 

 

 

 

 

 

 

                                      (a) 

 

 

 

 

 

 

 

                                     (b) 

 

 

 

 

 

 

 

                                      (c) 

FIG.1  (a) Point-source response of the medium, (b) local plane-
wave (telescopic) response of the medium and (c) time-reversed 
telescopic solution (non-physical solution but represents a 
mapping ray, here shown the image ray). 

Medium response of elementary solutions 

In the following, two different ray quantities will be 
computed for a general ray solution, namely the 

geometrical spreading  and either the time-wavefront 

curvature M or its inverse M-1. 

The geometrical spreading is given as (Červený, 2001) 
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and the time-wavefront curvature and its inverse can be 
calculated from the formulas (Červený, 2001) 
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The initial conditions in case of a point-source read (v0 

being the local (interval) velocity at source location) 
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and in case of a telescopic source 

      .0,1  iniini PQ                                                (20) 

 
Point source solution (forward in time) 

The point-source (ps) geometrical spreading is now given 
by the simple expression 
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where v=v(0) represents the local (interval) velocity at the 
initial point (time 0) of the ray. Equation (21) can be 
regarded as a generalization of the geometrical spreading 
formula of Newman (1973) which is valid for a point 

source in a horizontally layered earth model. 

A correspondingly simple expression can be found for 
(Mps)
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Equation (22) can also be considered as a generalization 
of the corresponding expression valid for a stratigraphic 
earth model. The relationship between rms-velocity and 
nmo-velocity in ray-centered coordinates follows directly 
from Eq.(22) reflecting their basic difference in case of 
smooth lateral velocity variations around the central ray. 
 

Telescopic solution (forward in time) 

Replacing the point source by a local telescopic (ts) 
condition, the geometrical spreading takes the form 

      


11 112

w
qqqqrmsts vvvvTvT                 (23) 

In Eq.(23),   is an inhomogeneity factor which is zero if 
vqq=0 (stratigraphic earth model), from which it 

immediately follows that 1
 ts

. Unlike the point-source 

case, the geometrical spreading is in general sensitive to 
vqq. 

In case of a telescopic solution, the time-wavefront 
curvature gives the proportional relationship with respect 
to medium parameters. It is given explicitly as 
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In case of a stratigraphic earth model it follows directly 
from Eq.(24)  that  

       ,0
 tsM                                                              (25) 

as expected.       
 

Telescopic solution (time reversed) 

This third elementary solution does not represent a 
physical wave, but plays a role in velocity mapping as 
discussed later. However, for the sake of completeness 
we state again the same two quantities as for the forward 
time propagated telescopic wave. The equivalences of 
Eqs.(23) and (24) are 
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Thus, direct comparison shows that no reciprocal 
relations exist between the two telescopic solutions for 
the geometrical spreading and the wavefront time-
curvature. 

Source-perturbed ray-propagator system 

In this section we consider the case of paraxial tracing 
along a central ray where the receiver location is fixed but 
the source position is allowed to be perturbed very locally. 
Such a system can be used to study how a source 
perturbation manifests itself as corresponding time 
perturbations in the ray quantities. We will later see how 
useful this propagator system is when analyzing the 
velocity-stretch problem. 

The source-perturbed, ray-propagator system can be 
constructed from Eqs.(4) and (9a-b). As shown in Fig.2, 
we consider two nearby point-source positions along the 
central ray. If the medium properties are assumed the 
same around both sources, the source-perturbed system 
can now be written as (linearized assumption) 
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In Eq.(28), the infinitesimal traveltime along the central 
ray between the two sources is assumed to be dT. 

Moreover, the local velocity quantities around the two 
sources are given by v0 and v0,qq. Finally, the propagator 

components 
2121 ,,, PPQQ


 are associated with the 

source corresponding to the shortest traveltime to the 
fixed receiver location. 

 

Time-migration velocity stretching 

The 2D diffraction curve employed in time-migration 
(referred to as a time-migration stacking moveout) is often 
represented in midpoint and half-offset domain (y,h). 

Within a hyperbolic approximation it reads as follows 
(Hubral and Krey, 1980) 
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FIG.2  Schematics of a source-perturbed calculation. Two nearby 
point sources are initiated at the same firing time, the change in 
ray quantities with time evaluated at a fixed receiver location. 

where 0 = (y0,0) is the two-way traveltime along the 
central ray, y0 is the central midpoint and  vM  denotes the 

migration velocity. We assume that the migration velocity, 
vM, is already available, its actual determination being 

outside the scope of this paper. Equation (29) can be 
interpreted as a paraxial approximation of a diffraction 
traveltime surface that originates from an unknown depth 

point scatterer, D. More specifically, (y,h) approximates 

the traveltime of the diffraction ray that connects the 
source (of coordinate y-h) and the receiver (at coordinate  
y+h) on the seismic line to the scatterer at D. The point 

(y0,0) specifies the apex of the diffraction curve. As such, 
the image ray that starts at D hits the seismic line at y0 

and traveltime . Equivalently, the image ray that 
propagates backward in time hits the scatterer D when 

the (one-way) traveltime  is consumed (cf. Fig.3). We 
finally note that the wavefront along the image ray from D 
to y0 (central image ray) is tangent to the seismic line at 
y0, confirming that the slowness vector of the image ray is 
orthogonal to the measurement line also at y0. In case of 

paraxial ray tracing (surrounding the image ray) from a 
point source at the true (unknown) scatterer location, D, 
the associated time-wavefront curvature M measured at 
y0 can be calculated from Eq.(29) 
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From Eq.(22) it follows directly that vM  = vnmo, where the 
nmo-velocity is calculated along the central/image ray. 
Equation (22) also shows how vnmo relates to the actual 

medium velocities. In case of lateral velocity variations 
there is a stretch factor between vnmo and vrms (cf.Eq.(22)). 
This stretch factor is given by 

ts


 (cf. Eqs.(26) and (36)). 

This implies that (with 
Dixv~ representing a generalized Dix 

velocity and v0 being the local velocity around D) 

Central or 
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Fixed receiver 
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FIG.3 Constant-offset prestack time migrated section and the     
image ray concept. 

The same result can be obtained more formally by 
considering the local time-variation of M-1, namely 

(Cameron et al., 2007) 
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For convenience, we introduce the one-way time-

migration traveltime =/2 Employing the perturbed ray 

system in Eq.(28) with point-source initial conditions, 
namely, TT

iniini vPQ )/1,0(),( 0  and TT

ff PQPQ ),(),( 22 , yields       
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We are now in the position to compute the time 
perturbation ),()( 1
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which, in view of Eq.(33), yields (at the migrated 

traveltime 0=0/2)  
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in which the far most right equations follows from the 
symplectic condition in Eq.(6a), and where we also have 
made use of Eq.(16). Finally, the main result is obtained 
from Eqs.(32) and (35) 
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In Eq.(36) the proportionality factor between the 
generalized Dix velocity and the medium velocity is given 
by the geometrical spreading factor of a paraxial ray 
bundle surrounding the central/image ray and traced 

backward in (one-way) time t0/2. Note that, in order to use 

this expression, we need to know the local/interval 
velocity along the ray (which is the unknown to be solved 
for in the beginning). In addition, we also need to 
calculate vqq in order to carry out the tracing. Thus the 

velocity stretch problem is an inversion problem. The 
important result in Eq.(36) was first derived by Cameron 
et al. (2007).  

Stacking (ZO) velocity stretching and CRS 

By analogy with the previous section, we can make a 
revisit to the basic parameters associated with the 
Common Reflection Surface (CRS) method (see, e.g., 
Jäger et al., 2001). CRS uses as stacking moveout the 
generalized hyperbolic traveltime in offset-midpoint 
coordinates as a paraxial approximation around the 
(central) normal ray. In 2D, such moveout reads 
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In Eq.(38), β is the take-off angle of the central/normal 
ray, v0  is the surface velocity and RNip is the radius of 

curvature (paraxial sense) associated with a point source 
at the normal-incidence point (NIP) of the central ray at 
the reflector segment and measured at the surface in ray-
centered coordinates. Similarly, RN is the radius of 

curvature of a local exploding reflector wave initiated 
around the same NIP. By considering data sorted in CMP 
gathers (i.e. with y = y0 ), Eq.(37) reduces to the same 

form as the well-known NMO-equation: 
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Within the CRS formulation Eq.(39) can be interpreted as 
a paraxial expansion of diffraction traveltimes that refer to 
a scatterer at NIP. From Eq.(39) it follows that (assuming 
common-reflection-point at NIP) 
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where MNIP = Mps  as given by Eq.(22) and the cosine 
factor represents coordinate transformation from ray 
centered system to Cartesian midpoint-offset system.  
Thus Eq.(40) represents an effective medium 
representation valid for a smooth medium within a 
paraxial assumption. Note that vnmo is calculated along 

the (curved) normal ray and relates to the medium 
velocities through Eq.(22), similar to the time-migration 
case. From Eq.(40) it follows directly that (ray-centered 
coordinates) 
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by analogy with Eq.(30) (vM = vnmo, with vnmo associated 
with image ray). After stacking, the CRS-equation in 
Eq.(39) takes the (ZO) form (h = 0) 
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Optimal parameters A and B can now be obtained by 

stacking within the stack (in combination with a coherency 
measure such as semblance and proper choice of 
apertures). Equation (42) has a simple interpretation: the 
first term within the bracket represents the traveltime 
moveout in case a dipping reflector embedded in a model 
which is locally homogeneous along the direction 
orthogonal to the central ray direction and the second 
term is a correction term aiming to account for a possible 
curvature of reflector segment as well as lateral 
inhomogeneities in the velocity model. Note that   MN = 

1/(v0RN) is not zero in case of a plane reflector if lateral 

velocity variations exist around the central ray (cf. 
Eq.(24)). Thus after a completed CRS processing for a 
fixed trace (y0), a time sample corresponding to a (one-
way) traveltime t0/2 will have three parameters attached: 
β, MNIP = (v0RNIP)-1 and MN = (v0RN)-1. By analogy with the 

migration-velocity de-stretching a similar procedure can in 
principle be applied to a ZO section to de-stretch the 
NMO-velocities using the normal ray instead of the image 
ray as a central ray for the paraxial computations. 
However, differently from the time-migrated case, 
marching sample by sample along a fixed trace 
corresponds to a family of normal rays (as given by the 
takeoff angle β). By computing d(MNIP)-1/d(t0/2) locally, and 

then combining Eqs.(35) and (41), the medium velocity 
can be inverted for as in the time-migration case. The 
counterpart of Eq.(36) then reads (note that the 
geometrical spreading now relates to the time-reversed 
tracing of an initially telescopic paraxial system with the 
normal ray serving as central ray) 
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However, unlike the time-migration case, one more 
parameter is now available namely MN. In analogy with 

earlier analysis, we investigate what type of medium 
information is unwrapped if we calculate the quantity 
dMN/d(t0/2) locally along a given stacked trace. If the local 

curvature can be neglected, this is straightforward by 
again employing the source-perturbed ray propagator 
system (but this time with a telescopic initial condition) 
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The perturbation in the time-wavefront curvature MN can 

be written as 
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By again applying the symplectic condition it can be 
demonstrated that 
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which in combination with Eq.(45) can be used to 
establish the final result (T = t0/2) 
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where we also have made use of Eq.(16). Note that the 
matrix 

1P


 is determined from the paraxial ray tracing 

around the normal ray with a telescopic initial condition 
and traced backward in time as discussed before. As in 
the time-migration case, we need to solve an inverse 
problem based on computing the paraxial mapping ray 
(here normal ray) system backward in time. Having 
access to both the telescopic and point-source responses 
of the earth model, introduces a further constraint on this 
inverse system (additional requirement that vqq should 

fulfill Eq.(47)). However, if the local curvature of the 
reflector segment cannot be neglected, dMN/d(t0/2) will 

interpret this as initial local lateral velocity variations 
(manifested in vqq). The approach discussed here can be 
used as a refinement of a standard NIP tomography 
application (Duveneck, 2004). Using the NIP velocity field 
as input, further local refinement can be carried out within 
areas with good quality MNIP (and possibly MN) values. A 

further improvement in building smooth consistent 
medium velocities in depth will be to simultaneously work 
with prestack time-migrated and CRS type of stacked 
data. 

Conclusions 

An incremental ray-propagator system has been 
introduced as a possible tool to more easily analyze the 
medium information carried by different elementary earth 
responses (point and telescopic type). This system is not 
to be regarded as a practical paraxial ray-tracing system, 
but serves the purpose of an analyzing tool. The concept 
is also well tailored for analyzing the so-called velocity 
stretch problem, i.e. how to recover local (interval) 
velocities from either time-migration or stacking velocities. 
Finally it should be noted that the generalization to the 3D 
case is rather straightforward. 
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